当前:总站
当前位置:首页>算法模型列表
全部 回归模型 分类模型 聚类模型 关联规则 统计分析 机理模型
聚类算法是一种典型的无监督学习算法,主要用于将相似的样本自动归到一个类别中。聚类算法与分类算法最大的区别是:聚类算法是无监督的学习算法,而分类算法属于监督的学习算法。在聚类算法中根据样本之间的相似性,将样本划分到不同的类别中,对于不同的相似度计算方法,会得到不同的聚类结果,常用的相似度计算方法有欧式距离法。
由于传统的KMeans算法的聚类结果易受到初始聚类中心点选择的影响,因此在传统的KMeans算法的基础上进行算法改进,对初始中心点选取比较严格,各中心点的距离较远,这就避免了初始聚类中心会选到一个类上,一定程度上克服了算法陷入局部最优状态。
混合高斯模型(Gaussian Mixture Model,简称GMM)是用高斯概率密度函数(正态分布曲线)精确地量化事物,将一个事物分解为若干的基于高斯概率密度函数(正态分布曲线)形成的模型。通俗点讲,无论观测数据集如何分布以及呈现何种规律,都可以通过多个单一高斯模型的混合进行拟合。
隐含狄利克雷分布简称LDA(Latent Dirichlet allocation),首先由Blei, David M.、吴恩达和Jordan, Michael I于2003年提出,目前在文本挖掘领域包括文本主题识别、文本分类以及文本相似度计算方面都有应用。
类型:回归模型 浏览量:587
类型:回归模型 浏览量:557
类型:分类模型 浏览量:526
类型:回归模型 浏览量:523
类型:聚类模型 浏览量:518
类型:分类模型 浏览量:517
类型:分类模型 浏览量:507
类型:关联规则 浏览量:506
类型:回归模型 浏览量:498
类型:分类模型 浏览量:473